Prior-Free Bayesian Optimal Double-Clock Auctions

Simon Loertscher Leslie M. Marx

EARIE 2015

<ロ> (四) (四) (注) (注) (注) (三)

Bayesian mechanism design:

- Fruitful conceptual framework and analytical tool
- "Fragile" because of its dependence on the fine details of the environment

• E.g., optimal reserves vary with distributions

- Wilson (1987): "Only by repeated weakening of common knowledge assumptions will the theory approximate reality" as is "required to conduct useful analyses of practical problems"
- Yet, may "fragility" be a virtue?
- If designers (and econometricians) can learn about the environment, the theory is predictive

< A > < > >

Bayesian mechanism design:

- Fruitful conceptual framework and analytical tool
- "Fragile" because of its dependence on the fine details of the environment
 - E.g., optimal reserves vary with distributions
- Wilson (1987): "Only by repeated weakening of common knowledge assumptions will the theory approximate reality" as is "required to conduct useful analyses of practical problems"
- Yet, may "fragility" be a virtue?
- If designers (and econometricians) can learn about the environment, the theory is predictive

Bayesian mechanism design:

- Fruitful conceptual framework and analytical tool
- "Fragile" because of its dependence on the fine details of the environment
 - E.g., optimal reserves vary with distributions
- Wilson (1987): "Only by repeated weakening of common knowledge assumptions will the theory approximate reality" as is "required to conduct useful analyses of practical problems"
- Yet, may "fragility" be a virtue?
- If designers (and econometricians) can learn about the environment, the theory is predictive

Robust and Bayesian Mechanisms

This paper

- Bridges the gap between robust and Bayesian mechanism design
- Develops a double-clock auction for a two-sided environment with privately informed buyers and sellers that is:
 - Prior free
 - Endows agents with obviously dominant strategies
 - Preserves the privacy of agents who trade
 - Asymptotically Bayesian optimal (any weights on revenue and efficiency)

Prior-Free Double-Clock Auctions (DCAs)

Defined without reference to distributions

 Eqm outcomes vary with distributions because the mechanism estimates relevant details nonparametrically and uses these estimates to determine who trades

Prior-Free Double-Clock Auctions (DCAs)

- Defined without reference to distributions
- Eqm outcomes vary with distributions because the mechanism estimates relevant details nonparametrically and uses these estimates to determine who trades

Further Properties of Prior-Free DCAs

- Deficit free
- Weakly group strategy-proof
- Operational for any size of market
- Requires only limited commitment by the designer
- Its equilibrium outcome remains an equilibrium outcome in a full-information first-price double auction
- Ex post individually rational

Bayesian mechanism design can be implemented, asymptotically, in a way that is robust on dimensions relevant for practical problems

Further Properties of Prior-Free DCAs

- Deficit free
- Weakly group strategy-proof
- Operational for any size of market
- Requires only limited commitment by the designer
- Its equilibrium outcome remains an equilibrium outcome in a full-information first-price double auction
- Ex post individually rational

Bayesian mechanism design can be implemented, asymptotically, in a way that is robust on dimensions relevant for practical problems

For two-sided setups,

- We characterize the Bayesian optimal mechanisms that preserve the privacy of trading agents
- Show that our mechanism converges to the privacy preserving Bayesian optimum as estimation errors vanish

Moreover, we establish

- As a corollary, the impossibility of ex post efficient privacy preserving trade (when full trade is sometimes but not always optimal)
- Show that the mechanism performs well in the small

For two-sided setups,

- We characterize the Bayesian optimal mechanisms that preserve the privacy of trading agents
- Show that our mechanism converges to the privacy preserving Bayesian optimum as estimation errors vanish

Moreover, we establish

- As a corollary, the impossibility of ex post efficient privacy preserving trade (when full trade is sometimes but not always optimal)
- Show that the mechanism performs well in the small

We can incorporate:

- Real-time diagnostics regarding tradeoffs associated with continuing the DCA
- Revenue thresholds
- Asymmetries among agents
 - Caps on the number of agents of a particular group who can trade
 - Favoritism towards particular groups of agents

We can incorporate:

- Real-time diagnostics regarding tradeoffs associated with continuing the DCA
- Revenue thresholds
- Asymmetries among agents
 - Caps on the number of agents of a particular group who can trade
 - Favoritism towards particular groups of agents

Role for Flexible Two-Sided Exchanges

- Novel environments and one-off reallocations of assets
 - Designer and participants can't rely on past experience
 - Desirable to dispense with Bayesian notions both for the rules of trade and for the equilibrium strategies
 - Obvious dominant strategies aid inexperienced bidders
- More generally:
 - Privacy preservation reduces participation concerns and costs
 - Envy-freeness guards against claims of "arbitrary and capricious" design (esp. if designer is Government)
 - Deficit-freeness protects the designer

A (10) A (10) A (10)

Role for Flexible Two-Sided Exchanges

- Novel environments and one-off reallocations of assets
 - Designer and participants can't rely on past experience
 - Desirable to dispense with Bayesian notions both for the rules of trade and for the equilibrium strategies
 - Obvious dominant strategies aid inexperienced bidders
- More generally:
 - Privacy preservation reduces participation concerns and costs
 - Envy-freeness guards against claims of "arbitrary and capricious" design (esp. if designer is Government)
 - Deficit-freeness protects the designer

Literature

- Wilson (1987), Bergemann and Morris (2005, 2012)
- Myerson and Satterthwaite (1983), Gresik and Satterthwaite (1989), Williams (1999)
- McAfee (1992), Milgrom and Segal (2015)
- Segal (2003), Baliga and Vohra (2003), Matsushima (2005)
- Goldberg, Hartline, and Wright (2001)

Key features that set our paper apart:

- Prior free for any market size
- Permits an implementation via DCA
- Methodological contribution: Observe and exploit the connection between spacings of order statistics (empirical) and virtual types (theoretical)

Literature

- Wilson (1987), Bergemann and Morris (2005, 2012)
- Myerson and Satterthwaite (1983), Gresik and Satterthwaite (1989), Williams (1999)
- McAfee (1992), Milgrom and Segal (2015)
- Segal (2003), Baliga and Vohra (2003), Matsushima (2005)
- Goldberg, Hartline, and Wright (2001)

Key features that set our paper apart:

- Prior free for any market size
- Permits an implementation via DCA
- Methodological contribution: Observe and exploit the connection between spacings of order statistics (empirical) and virtual types (theoretical)

< < >> < </p>

Illustration: Symmetric Setup and Revenue Extraction

- n buyers and m sellers; single-unit demand and supply
- Buyers' values v are independent draws from F(v) on
 [v, v] with continuous positive density f(v)
- Sellers' costs c are independent draws from G(c) on [c, c] with continuous positive density g(c)
- Everyone is risk neutral and has quasilinear utility
- Regularity holds:

$$\Phi(v) \equiv v - rac{1-F(v)}{f(v)} \quad ext{and} \quad \Gamma(c) \equiv c + rac{G(c)}{g(c)}$$

are increasing

Illustration: Symmetries, Revenue Extraction

- Designer and agents do not know the distributions
- Designer knows that regularity holds
- Objective: asymptotic revenue maximization
- Later allow for:
 - objective of weighted sum of revenue and social surplus
 - asymmetries between buyer and seller groups

Optimal Bayesian Mechanism

•
$$V_{(1)} > ... > V_{(n)} > V_{(n+1)} \equiv \underline{V}$$

•
$$c_{[1]} < ... < c_{[m]} < c_{[m+1]} \equiv \overline{c}$$

 Optimal Bayesian mechanism – maximizes expected revenue subject to IC and IR – trades q units, with q satisfying

$$\Phi(v_{(q)}) \ge \Gamma(c_{[q]})$$
 and $\Phi(v_{(q+1)}) < \Gamma(c_{[q+1]})$

DS implementation: buyers pay max{v_(q+1), Φ⁻¹(Γ(c_[q]))}, sellers receive min{c_[q+1], Γ⁻¹(Φ(v_(q)))}

< □ > < □ > < □ > < □ > < □ </pre>

Optimal Bayesian Mechanism

•
$$V_{(1)} > ... > V_{(n)} > V_{(n+1)} \equiv \underline{V}$$

•
$$c_{[1]} < ... < c_{[m]} < c_{[m+1]} \equiv \overline{c}$$

 Optimal Bayesian mechanism – maximizes expected revenue subject to IC and IR – trades q units, with q satisfying

$$\Phi(v_{(q)}) \ge \Gamma(c_{[q]})$$
 and $\Phi(v_{(q+1)}) < \Gamma(c_{[q+1]})$

• DS implementation: buyers pay max{ $v_{(q+1)}, \Phi^{-1}(\Gamma(c_{[q]}))$ }, sellers receive min{ $c_{[q+1]}, \Gamma^{-1}(\Phi(v_{(q)}))$ }

Optimal Bayesian Mechanism

•
$$V_{(1)} > ... > V_{(n)} > V_{(n+1)} \equiv \underline{V}$$

•
$$c_{[1]} < ... < c_{[m]} < c_{[m+1]} \equiv \overline{c}$$

 Optimal Bayesian mechanism – maximizes expected revenue subject to IC and IR – trades q units, with q satisfying

$$\Phi(v_{(q)}) \ge \Gamma(c_{[q]})$$
 and $\Phi(v_{(q+1)}) < \Gamma(c_{[q+1]})$

DS implementation: buyers pay max{v_(q+1), Φ⁻¹(Γ(c_[q]))}, sellers receive min{c_[q+1], Γ⁻¹(Φ(v_(q)))}

Empirical Virtual Types and Spacings

• Empirical distributions:

$$\hat{F}(j)\equiv rac{n+1-j}{n+1}$$
 and $\hat{G}(j)\equiv rac{j}{m+1}$

Empirical virtual types:

$$\hat{\Phi}(j) \equiv \mathbf{v}_{(j)} - \frac{1 - \hat{F}(j)}{\frac{\hat{F}(j) - \hat{F}(j+1)}{\mathbf{v}_{(j)} - \mathbf{v}_{(j+1)}}} = \mathbf{v}_{(j)} - j[\mathbf{v}_{(j)} - \mathbf{v}_{(j+1)}]$$

$$\hat{\Gamma}(j) \equiv \mathbf{c}_{[j]} + \frac{\hat{G}(j)}{\frac{\hat{G}(j) - \hat{G}(j+1)}{\mathbf{c}_{[j]} - \mathbf{c}_{[j+1]}}} = \mathbf{c}_{[j]} + j[\mathbf{c}_{[j+1]} - \mathbf{c}_{[j]}]$$

- Trade k 1 units, where k is the largest number such that $\hat{\Phi}(k) \ge \hat{\Gamma}(k)$ and $\hat{\Phi}(k + 1) < \hat{\Gamma}(k + 1)$
- Buyers pay ν_(k), sellers receive c_[k]
 Issue: Φ̂ and Γ̂ are highly volatile

- Trade k 1 units, where k is the largest number such that $\hat{\Phi}(k) > \hat{\Gamma}(k)$ and $\hat{\Phi}(k + 1) < \hat{\Gamma}(k + 1)$
- Buyers pay v_(k), sellers receive c_[k]
- Issue: $\hat{\Phi}$ and $\hat{\Gamma}$ are highly volatile

Image: A matrix

Smoothed Virtual Types

- Take the average of nearby spacings and reduce the coefficient to get smoothed virtual types:
- Smoothed virtual value

$$\tilde{\Phi}(j) \equiv v_{(j)} - (j-2)\frac{v_{(j)} - v_{(j+r_n)}}{r_n}$$

Smoothed virtual cost

$$\widetilde{\Gamma}(j) \equiv c_{[j]} + (j-2) \frac{c_{[j+r_m]} - c_{[j]}}{r_m}$$

• where r_n and r_m grow large with n and m, but at a slower rate (e.g. $r_n = \sqrt{n}$)

Smoothed Virtual Types

- Take the average of nearby spacings and reduce the coefficient to get smoothed virtual types:
- Smoothed virtual value

$$\tilde{\Phi}(j) \equiv v_{(j)} - (j-2)\frac{v_{(j)} - v_{(j+r_n)}}{r_n}$$

Smoothed virtual cost

$$\widetilde{\Gamma}(j) \equiv c_{[j]} + (j-2) rac{c_{[j+r_m]} - c_{[j]}}{r_m}$$

• where r_n and r_m grow large with n and m, but at a slower rate (e.g. $r_n = \sqrt{n}$)

Theoretical, Empirical, and Smoothed Virtual Types

< A

Theoretical, Empirical, and Smoothed Virtual Types

Theoretical, Empirical, and Smoothed Virtual Types

Properties of Smoothed Virtual Types

$$\begin{split} \tilde{\Phi}(j) &= v_{(j)} - (j-2) \frac{v_{(j)} - v_{(j+r_n)}}{r_n} \\ \tilde{\Gamma}(j) &= c_{[j]} + (j-2) \frac{c_{[j+r_m]} - c_{[j]}}{r_m} \end{split}$$

- For $j \ge 2$, $\tilde{\Phi}(j) \ge \tilde{\Gamma}(j)$ implies $v_{(j)} \ge c_{[j]}$
- 2 $\tilde{\Phi}(j)$ depends only on *j* and $v_{(j)}, ..., v_{(n)}$
- (a) $\tilde{\Gamma}(j)$ depends only on *j* and $c_{[j]}, ..., c_{[m]}$
 - 1 is important for deficit-freeness
 - 2–3 are important for dominant strategies and non-bossiness
 - non-bossiness is important for privacy preservation and clock implementation

Properties of Smoothed Virtual Types

$$\begin{split} \tilde{\Phi}(j) &= v_{(j)} - (j-2) \frac{v_{(j)} - v_{(j+r_n)}}{r_n} \\ \tilde{\Gamma}(j) &= c_{[j]} + (j-2) \frac{c_{[j+r_m]} - c_{[j]}}{r_m} \end{split}$$

- For $j \ge 2$, $\tilde{\Phi}(j) \ge \tilde{\Gamma}(j)$ implies $v_{(j)} \ge c_{[j]}$
- **2** $\tilde{\Phi}(j)$ depends only on *j* and $v_{(j)}, ..., v_{(n)}$
- **③** $\tilde{\Gamma}(j)$ depends only on *j* and $c_{[j]}, ..., c_{[m]}$
 - 1 is important for deficit-freeness
 - 2–3 are important for dominant strategies and non-bossiness
 - non-bossiness is important for privacy preservation and clock implementation
Properties of Smoothed Virtual Types

$$\begin{split} \tilde{\Phi}(j) &= v_{(j)} - (j-2) \frac{v_{(j)} - v_{(j+r_n)}}{r_n} \\ \tilde{\Gamma}(j) &= c_{[j]} + (j-2) \frac{c_{[j+r_m]} - c_{[j]}}{r_m} \end{split}$$

- For $j \ge 2$, $\tilde{\Phi}(j) \ge \tilde{\Gamma}(j)$ implies $v_{(j)} \ge c_{[j]}$
- **2** $\tilde{\Phi}(j)$ depends only on *j* and $v_{(j)}, ..., v_{(n)}$
- **③** $\tilde{\Gamma}(j)$ depends only on *j* and $c_{[j]}, ..., c_{[m]}$
 - 1 is important for deficit-freeness
 - 2–3 are important for dominant strategies and non-bossiness
 - non-bossiness is important for privacy preservation and clock implementation

Properties of Smoothed Virtual Types

$$\begin{split} \tilde{\Phi}(j) &= v_{(j)} - (j-2) \frac{v_{(j)} - v_{(j+r_n)}}{r_n} \\ \tilde{\Gamma}(j) &= c_{[j]} + (j-2) \frac{c_{[j+r_m]} - c_{[j]}}{r_m} \end{split}$$

- For $j \ge 2$, $\tilde{\Phi}(j) \ge \tilde{\Gamma}(j)$ implies $v_{(j)} \ge c_{[j]}$
- **2** $\tilde{\Phi}(j)$ depends only on *j* and $v_{(j)}, ..., v_{(n)}$
- ³ Γ(*j*) depends only on *j* and $c_{[j]}, ..., c_{[m]}$
 - 1 is important for deficit-freeness
 - 2–3 are important for dominant strategies and non-bossiness
 - non-bossiness is important for privacy preservation and clock implementation

Properties of Smoothed Virtual Types

$$\begin{split} \tilde{\Phi}(j) &= v_{(j)} - (j-2) \frac{v_{(j)} - v_{(j+r_n)}}{r_n} \\ \tilde{\Gamma}(j) &= c_{[j]} + (j-2) \frac{c_{[j+r_m]} - c_{[j]}}{r_m} \end{split}$$

- For $j \ge 2$, $\tilde{\Phi}(j) \ge \tilde{\Gamma}(j)$ implies $v_{(j)} \ge c_{[j]}$
- 2 $\tilde{\Phi}(j)$ depends only on *j* and $v_{(j)}, ..., v_{(n)}$
- ³ Γ(*j*) depends only on *j* and $c_{[j]}, ..., c_{[m]}$
 - 1 is important for deficit-freeness
 - 2–3 are important for dominant strategies and non-bossiness
 - non-bossiness is important for privacy preservation and clock implementation

- Define $\tilde{\Phi}(n+1) = -\infty$ and $\tilde{\Gamma}(m+1) = \infty$
- Let \tilde{k} be the largest integer s.t.

$$ilde{\Phi}(ilde{k}) \geq ilde{\Gamma}(ilde{k}) \quad ext{and} \quad ilde{\Phi}(ilde{k}+1) < ilde{\Gamma}(ilde{k}+1)$$

• Trade $\tilde{k} - 1$ units at prices $p_B = v_{(\tilde{k})}$ and $p_S = c_{[\tilde{k}]}$

Distribution-Free Properties

- Dominant strategy incentive compatible
 - An agent who trades under truth telling cannot affect prices and still trade
 - An agent who does not trade under truth telling makes a loss when trading after a lie
- Ex post IR
- Envy free
- Non-bossy
- Deficit free
- Weak group strategy-proof

- Compare prior-free to optimal revenue as $n \to \infty$ and $m \to \infty$
- A mechanism is asymptotically optimal if the ratio of the value of the objective – for now, revenue – under this mechanism over the value of the objective under the optimal mechanism converges in probability to 1
- Proposition: The baseline prior-free mechanism is asymptotically optimal.

Ratio of Prior-Free to Optimal Revenue

► Rate of Convergence

Ratio of Prior-Free to Optimal Revenue

► Rate of Convergence

- Step 1: uniform bounds exist for the variance of the estimated spacings used in the smoothed virtual types (away from the boundary)
- Step 2: Φ Φ and Γ Γ are uniformly convergent in probability to zero (away from the boundary)
- Step 3: if <u>v</u> < <u>c</u>, the number of trades in the baseline prior-free mechanism approaches that in the optimal mechanism
 - Intuitively, if Φ and Γ stay close to Φ and Γ, then the first intersection point of Φ and Γ cannot be far from the intersection of Φ and Γ
- Step 4: the number of trades and payments converge in probability to the optimal level
 Proof details

A (10) × (10) × (10) ×

- Step 1: uniform bounds exist for the variance of the estimated spacings used in the smoothed virtual types (away from the boundary)
- Step 2: Φ Φ and Γ Γ are uniformly convergent in probability to zero (away from the boundary)
- Step 3: if <u>v</u> < <u>c</u>, the number of trades in the baseline prior-free mechanism approaches that in the optimal mechanism
 - Intuitively, if Φ and Γ stay close to Φ and Γ, then the first intersection point of Φ and Γ cannot be far from the intersection of Φ and Γ
- Step 4: the number of trades and payments converge in probability to the optimal level
 Proof details

- 4 回 ト 4 回 ト

- Step 1: uniform bounds exist for the variance of the estimated spacings used in the smoothed virtual types (away from the boundary)
- Step 2: Φ Φ and Γ Γ are uniformly convergent in probability to zero (away from the boundary)
- Step 3: if <u>v</u> < <u>c</u>, the number of trades in the baseline prior-free mechanism approaches that in the optimal mechanism
 - Intuitively, if Φ and Γ stay close to Φ and Γ, then the first intersection point of Φ and Γ cannot be far from the intersection of Φ and Γ
- Step 4: the number of trades and payments converge in probability to the optimal level Proof details

(4 回) (4 回) (4 回)

- Step 1: uniform bounds exist for the variance of the estimated spacings used in the smoothed virtual types (away from the boundary)
- Step 2: Φ Φ and Γ Γ are uniformly convergent in probability to zero (away from the boundary)
- Step 3: if <u>v</u> < <u>c</u>, the number of trades in the baseline prior-free mechanism approaches that in the optimal mechanism
 - Intuitively, if Φ and Γ stay close to Φ and Γ, then the first intersection point of Φ and Γ cannot be far from the intersection of Φ and Γ
- Step 4: the number of trades and payments converge in probability to the optimal level

 Proof details

Generalization

• Extends to a more general designer objective:

- α revenue + (1 α) total surplus
- Bayesian optimal mechanism is based on weighted virtual types:

$$\Phi_{lpha}(v) \equiv v - lpha rac{1 - F(v)}{f(v)}$$
 and $\Gamma_{lpha}(c) \equiv c + lpha rac{G(c)}{g(c)}$

and trades q_{α} units iff $\Phi_{\alpha}(v_{(q_{\alpha})}) \ge \Gamma_{\alpha}(c_{[q_{\alpha}]})$ and $\Phi_{\alpha}(v_{(q_{\alpha}+1)}) < \Gamma_{\alpha}(c_{[q_{\alpha}+1]})$

• We call this an α -optimal mechanism

• Extends to a more general designer objective:

- α revenue + (1 α) total surplus
- Bayesian optimal mechanism is based on weighted virtual types:

$$\Phi_{lpha}(m{v})\equivm{v}-lpharac{1-m{F}(m{v})}{f(m{v})} ext{ and } \Gamma_{lpha}(m{c})\equivm{c}+lpharac{m{G}(m{c})}{g(m{c})}$$

and trades q_{α} units iff $\Phi_{\alpha}(v_{(q_{\alpha})}) \ge \Gamma_{\alpha}(c_{[q_{\alpha}]})$ and $\Phi_{\alpha}(v_{(q_{\alpha}+1)}) < \Gamma_{\alpha}(c_{[q_{\alpha}+1]})$

• We call this an α -optimal mechanism

- We define optimality in light of what is possible subject to privacy preservation
 - Privacy preservation matters (Hurwicz and Reiter 2006; McMillan 1994; FCC; Brandt and Sandholm 2005)
- Privacy preservation requires a clock implementation
- What does clock implementation require?

- We define optimality in light of what is possible subject to privacy preservation
 - Privacy preservation matters (Hurwicz and Reiter 2006; McMillan 1994; FCC; Brandt and Sandholm 2005)
- Privacy preservation requires a clock implementation
- What does clock implementation require?

A direct mechanism can be implemented via a DCA if and only if it satisfies dominant strategies, non-bossiness, and envy-freeness.

- Show that DS, NB, EF imply the possibility of clock implementation
- DS: price faced does not depend on own report
- EF: all face same price
- NB: price can only depend on reports of nontrading agents
- DS and EF: buyers' price must increase and sellers' price decrease as the quantity traded decreases
- Implies that clock implementation exists

・ 同 ト ・ ヨ ト ・ ヨ

A direct mechanism can be implemented via a DCA if and only if it satisfies dominant strategies, non-bossiness, and envy-freeness.

- Show that DS, NB, EF imply the possibility of clock implementation
- DS: price faced does not depend on own report
- EF: all face same price
- NB: price can only depend on reports of nontrading agents
- DS and EF: buyers' price must increase and sellers' price decrease as the quantity traded decreases
- Implies that clock implementation exists

・ 同 ト ・ ヨ ト ・ ヨ

A direct mechanism can be implemented via a DCA if and only if it satisfies dominant strategies, non-bossiness, and envy-freeness.

- Show that DS, NB, EF imply the possibility of clock implementation
- DS: price faced does not depend on own report
- EF: all face same price
- NB: price can only depend on reports of nontrading agents
- DS and EF: buyers' price must increase and sellers' price decrease as the quantity traded decreases
- Implies that clock implementation exists

A (10) × A (10) × A (10)

A direct mechanism can be implemented via a DCA if and only if it satisfies dominant strategies, non-bossiness, and envy-freeness.

- Show that DS, NB, EF imply the possibility of clock implementation
- DS: price faced does not depend on own report
- EF: all face same price
- NB: price can only depend on reports of nontrading agents
- DS and EF: buyers' price must increase and sellers' price decrease as the quantity traded decreases
- Implies that clock implementation exists

A (10) × A (10) × A (10)

A direct mechanism can be implemented via a DCA if and only if it satisfies dominant strategies, non-bossiness, and envy-freeness.

- Show that DS, NB, EF imply the possibility of clock implementation
- DS: price faced does not depend on own report
- EF: all face same price
- NB: price can only depend on reports of nontrading agents
- DS and EF: buyers' price must increase and sellers' price decrease as the quantity traded decreases
- Implies that clock implementation exists

A (10) × A (10) × A (10)

A direct mechanism can be implemented via a DCA if and only if it satisfies dominant strategies, non-bossiness, and envy-freeness.

- Show that DS, NB, EF imply the possibility of clock implementation
- DS: price faced does not depend on own report
- EF: all face same price
- NB: price can only depend on reports of nontrading agents
- DS and EF: buyers' price must increase and sellers' price decrease as the quantity traded decreases
- Implies that clock implementation exists

Privacy Preservation Comes at a Cost

Proposition

No α -optimal mechanism can be implemented as a DCA.

- Show the α -optimal mechanism violates NB
- In the α -optimal mechanism, buyer *i* trades iff $v_i \ge \max \{v_{(q_{\alpha}+1)}, \Phi_{\alpha}^{-1}(\Gamma_{\alpha}(c_{[q_{\alpha}]}))\}$, which depends on the report of the trading seller with type $c_{[q_{\alpha}]}$
- General impossibility result (any α and # of agents): Can't implement the ex post efficient or revenue maximizing (or any α-optimal) outcome in a privacy preserving way

No α -optimal mechanism can be implemented as a DCA.

• Show the α -optimal mechanism violates NB

- In the α-optimal mechanism, buyer *i* trades iff
 v_i ≥ max {v_(qα+1), Φ_α⁻¹ (Γ_α(c_[qα]))}, which depends on the report of the trading seller with type c_[qα]
- General impossibility result (any α and # of agents): Can't implement the ex post efficient or revenue maximizing (or any α-optimal) outcome in a privacy preserving way

No α -optimal mechanism can be implemented as a DCA.

- Show the α -optimal mechanism violates NB
- In the *α*-optimal mechanism, buyer *i* trades iff
 v_i ≥ max {*v_(qα+1)*, Φ⁻¹_α (Γ_α(*c_[qα]*))}, which depends on the report of the trading seller with type *c_[qα]*
- General impossibility result (any α and # of agents): Can't implement the ex post efficient or revenue maximizing (or any α-optimal) outcome in a privacy preserving way

No α -optimal mechanism can be implemented as a DCA.

- Show the α -optimal mechanism violates NB
- In the *α*-optimal mechanism, buyer *i* trades iff
 v_i ≥ max {*v_(qα+1)*, Φ⁻¹_α (Γ_α(*c_[qα]*))}, which depends on the report of the trading seller with type *c_[qα]*
- General impossibility result (any α and # of agents): Can't implement the ex post efficient or revenue maximizing (or any α-optimal) outcome in a privacy preserving way

What is the best one can do s.t. privacy preservation?

• We define the **Bayesian Optimal Privacy Preserving** (BOPP) mechanism in terms of a DCA

- Increasing buyer clock p^B, decreasing seller clock p^S (if the number of active buyers and sellers differ, move one clock to induce exit)
- When the DCA ends, active agents trade at clock prices
- State: j active buyers and sellers remain
 - If $\Phi(p^B) \ge \Gamma(p^S)$, DCA ends
 - Otherwise, move clocks until exit or Φ(p^B) = θ = Γ(p^S), where target θ is chosen optimally knowing F and G
 - If reach θ with no exit, DCA ends, otherwise continue

► Optimal θ

- We define the **Bayesian Optimal Privacy Preserving** (BOPP) mechanism in terms of a DCA
- Increasing buyer clock p^B, decreasing seller clock p^S (if the number of active buyers and sellers differ, move one clock to induce exit)
- When the DCA ends, active agents trade at clock prices
- State: j active buyers and sellers remain
 - If $\Phi(p^B) \ge \Gamma(p^S)$, DCA ends
 - Otherwise, move clocks until exit or Φ(p^B) = θ = Γ(p^S), where target θ is chosen optimally knowing F and G
 - If reach θ with no exit, DCA ends, otherwise continue

▶ Optimal θ

- We define the **Bayesian Optimal Privacy Preserving** (BOPP) mechanism in terms of a DCA
- Increasing buyer clock p^B, decreasing seller clock p^S (if the number of active buyers and sellers differ, move one clock to induce exit)
- When the DCA ends, active agents trade at clock prices
- State: j active buyers and sellers remain
 - If $\Phi(p^B) \ge \Gamma(p^S)$, DCA ends
 - Otherwise, move clocks until exit or Φ(p^B) = θ = Γ(p^S), where target θ is chosen optimally knowing F and G
 - If reach θ with no exit, DCA ends, otherwise continue

▶ Optimal θ

- We define the **Bayesian Optimal Privacy Preserving** (BOPP) mechanism in terms of a DCA
- Increasing buyer clock p^B, decreasing seller clock p^S (if the number of active buyers and sellers differ, move one clock to induce exit)
- When the DCA ends, active agents trade at clock prices
- State: *j* active buyers and sellers remain
 - If $\Phi(p^B) \ge \Gamma(p^S)$, DCA ends
 - Otherwise, move clocks until exit or $\Phi(p^B) = \theta = \Gamma(p^S)$, where target θ is chosen optimally knowing *F* and *G*
 - If reach θ with no exit, DCA ends, otherwise continue

- We define the **Bayesian Optimal Privacy Preserving** (BOPP) mechanism in terms of a DCA
- Increasing buyer clock p^B, decreasing seller clock p^S (if the number of active buyers and sellers differ, move one clock to induce exit)
- When the DCA ends, active agents trade at clock prices
- State: *j* active buyers and sellers remain
 - If $\Phi(p^B) \ge \Gamma(p^S)$, DCA ends
 - Otherwise, move clocks until exit or Φ(p^B) = θ = Γ(p^S), where target θ is chosen optimally knowing F and G
 - If reach θ with no exit, DCA ends, otherwise continue

▶ Optimal θ

- We define the **Bayesian Optimal Privacy Preserving** (BOPP) mechanism in terms of a DCA
- Increasing buyer clock p^B, decreasing seller clock p^S (if the number of active buyers and sellers differ, move one clock to induce exit)
- When the DCA ends, active agents trade at clock prices
- State: *j* active buyers and sellers remain
 - If $\Phi(p^B) \ge \Gamma(p^S)$, DCA ends
 - Otherwise, move clocks until exit or Φ(p^B) = θ = Γ(p^S), where target θ is chosen optimally knowing F and G

30 August 2015

27/39

• If reach θ with no exit, DCA ends, otherwise continue

Optimal θ

Prior-Free Approximation to the BOPP

• As in the BOPP, but use $\tilde{\Phi}$ and $\tilde{\Gamma}$ and estimate θ

 In the absence of estimation error, this augmented prior-free mechanism achieves the BOPP outcome

Illustration

Prior-Free Approximation to the BOPP

- As in the BOPP, but use $\tilde{\Phi}$ and $\tilde{\Gamma}$ and estimate θ
- In the absence of estimation error, this augmented prior-free mechanism achieves the BOPP outcome

Illustration

Performance in the Small

 Ratio of prior-free to optimal outcomes (types drawn from the U[0, 1])

Loertscher and Marx

Performance in the Small

 Ratio of prior-free to optimal outcomes (types drawn from the U[0, 1])

Loertscher and Marx
Performance in the Small

 Ratio of prior-free to optimal outcomes (types drawn from the U[0, 1])

Loertscher and Marx

Performance in the Small

 Ratio of prior-free to optimal outcomes (types drawn from the U[0, 1])

Loertscher and Marx

Performance in the Very Small (n = m = 2)

• Comparisons for n = m = 2 and $\alpha = 0$

				B:Beta[2,4]
	U[0,1]	Exp[1]	Beta[2,2]	S:Beta[4,2]
BOPP / Optimal	87%	<mark>79%</mark>	77%	60%
Augmented Prior-Free / BOPP	89%	99%	99%	92%
Augmented Prior-Free / Optimal	77%	78%	76%	55%
Baseline Prior–Free / Optimal	26%	26%	25%	3%

Performance in the Very Small (n = m = 2)

• Comparisons for n = m = 2 and $\alpha = 0$

				B:Beta[2,4]
	U[0,1]	Exp[1]	Beta[2,2]	S:Beta[4,2]
BOPP / Optimal	87%	79%	77%	60%
Augmented Prior-Free / BOPP	<mark>89%</mark>	99%	99%	92%
Augmented Prior-Free / Optimal	77%	78%	76%	55%
Baseline Prior–Free / Optimal	26%	26%	25%	3%

Performance in the Very Small (n = m = 2)

• Comparisons for n = m = 2 and $\alpha = 0$

				B:Beta[2,4]
	U[0,1]	Exp[1]	Beta[2,2]	S:Beta[4,2]
BOPP / Optimal	87%	79%	77%	60%
Augmented Prior-Free / BOPP	89%	99%	99%	92%
Augmented Prior-Free / Optimal	77%	78%	76%	55%
Baseline Prior–Free / Optimal	26%	26%	25%	3%

- Buyers and sellers are divided into groups
- Buyers in group b draw from F^b and sellers in s from G^s
- Group membership is common knowledge
- Use a multiple-clock auction synchronize buyer clocks to equalize virtual values across buyer groups, and similarly for sellers

Real-time diagnostics

- Threshold α such that the DCA ends
- Estimated change in social surplus from continuing
- Estimated change in revenue from continuing
- Alternative objectives
 - Maximization subject to a revenue threshold
- Extensions to the multiple-clock auction
 - Caps on the number in a group that can trade
 - Favoritism towards particular groups (apply a lower α to favored groups)

▶ Skip to end

< 回 > < 回 > < 回

Real-time diagnostics

- Threshold α such that the DCA ends
- Estimated change in social surplus from continuing
- Estimated change in revenue from continuing
- Alternative objectives
 - Maximization subject to a revenue threshold
- Extensions to the multiple-clock auction
 - Caps on the number in a group that can trade
 - Favoritism towards particular groups (apply a lower α to favored groups)

Skip to end

(4) (5) (4) (5)

Real-time diagnostics

- Threshold α such that the DCA ends
- Estimated change in social surplus from continuing
- Estimated change in revenue from continuing
- Alternative objectives
 - Maximization subject to a revenue threshold
- Extensions to the multiple-clock auction
 - Caps on the number in a group that can trade
 - Favoritism towards particular groups (apply a lower α to favored groups)

Skip to end

n^A	p^B	p^S	Revenue	$\tilde{\Phi}_1(n^A+1)$	Threshold α	Est. Δ in	Est. Δ in	Actual Δ in
				$\geq \tilde{\Gamma}_1(n^A+1)$		social surplus	revenue	revenue
						if continue	if continue	if continue
10	0.	1.	- 10.					
9	0.16	0.98	-7.33	No		0.63	2.27	2.27
8	0.24	0.87	-5.05	No		0.45	1.91	0.93
7	0.28	0.87	-4.13	No		0.48	1.26	3.67
6	0.43	0.5	-0.46	No	0.12	-0.17	1.31	0.48
5	0.45	0.44	0.03	No	0.2	-0.22	0.84	0.53
4	0.49	0.35	0.56	No	0.39	-0.38	0.59	0.47
3	0.59	0.25	1.02	Yes	1.15	-0.48	-0.06	-0.16
2	0.6	0.17	0.86	Yes	2.02	-0.57	-0.29	-0.17
1	0.86	0.17	0.7	Yes	4.75	-0.88	-0.7	-0.7
0	0.92	0.03	0.	Yes				

n^A	p^B	p^S	Revenue	$\tilde{\Phi}_1(n^A+1)$	Threshold α	Est. Δ in	Est. Δ in	Actual Δ in
				$\geq \! \tilde{\Gamma}_1(n^A\!+\!1)$		social surplus	revenue	revenue
						if continue	if continue	if continue
10	0.	1.	- 10.					
9	0.16	0.98	-7.33	No		0.63	2.27	2.27
8	0.24	0.87	-5.05	No		0.45	1.91	0.93
7	0.28	0.87	-4.13	No		0.48	1.26	3.67
6	0.43	0.5	-0.46	No	0.12	-0.17	1.31	0.48
5	0.45	0.44	0.03	No	0.2	-0.22	0.84	0.53
4	0.49	0.35	0.56	No	0.39	-0.38	0.59	0.47
3	0.59	0.25	1.02	Yes	1.15	-0.48	-0.06	-0.16
2	0.6	0.17	0.86	Yes	2.02	-0.57	-0.29	-0.17
1	0.86	0.17	0.7	Yes	4.75	-0.88	-0.7	-0.7
0	0.92	0.03	0.	Yes				

n^A	p^B	p^S	Revenue	$\tilde{\Phi}_1(n^A+1)$	Threshold α	Est. Δ in	Est. Δ in	Actual Δ in
				$\geq \! \tilde{\Gamma}_1(n^A\!+\!1)$		social surplus	revenue	revenue
						if continue	if continue	if continue
10	0.	1.	-10.					
9	0.16	0.98	-7.33	No		0.63	2.27	2.27
8	0.24	0.87	-5.05	No		0.45	1.91	0.93
7	0.28	0.87	-4.13	No		0.48	1.26	3.67
6	0.43	0.5	-0.46	No	0.12	-0.17	1.31	0.48
5	0.45	0.44	0.03	No	0.2	-0.22	0.84	0.53
4	0.49	0.35	0.56	No	0.39	-0.38	0.59	0.47
3	0.59	0.25	1.02	Yes	1.15	-0.48	-0.06	-0.16
2	0.6	0.17	0.86	Yes	2.02	-0.57	-0.29	-0.17
1	0.86	0.17	0.7	Yes	4.75	-0.88	-0.7	-0.7
0	0.92	0.03	0.	Yes				

n^A	p^B	p^S	Revenue	$\tilde{\Phi}_1(n^A+1)$	Threshold α	Est. Δ in	Est. Δ in	Actual Δ in
				$\geq \! \tilde{\Gamma}_1(n^A\!+\!1)$		social surplus	revenue	revenue
						if continue	if continue	if continue
10	0.	1.	- 10.					
9	0.16	0.98	-7.33	No		0.63	2.27	2.27
8	0.24	0.87	-5.05	No		0.45	1.91	0.93
7	0.28	0.87	-4.13	No		0.48	1.26	3.67
6	0.43	0.5	-0.46	No	0.12	-0.17	1.31	0.48
5	0.45	0.44	0.03	No	0.2	-0.22	0.84	0.53
4	0.49	0.35	0.56	No	0.39	-0.38	0.59	0.47
3	0.59	0.25	1.02	Yes	1.15	-0.48	-0.06	-0.16
2	0.6	0.17	0.86	Yes	2.02	-0.57	-0.29	-0.17
1	0.86	0.17	0.7	Yes	4.75	-0.88	-0.7	-0.7
0	0.92	0.03	0.	Yes				

n^A	p^B	p^S	Revenue	$\tilde{\Phi}_1(n^A+1)$	Threshold α	Est. Δ in	Est. Δ in	Actual Δ in
				$\geq \! \tilde{\Gamma}_1(n^A\!+\!1)$		social surplus	revenue	revenue
						if continue	if continue	if continue
10	0.	1.	-10.					
9	0.16	0.98	-7.33	No		0.63	2.27	2.27
8	0.24	0.87	-5.05	No		0.45	1.91	0.93
7	0.28	0.87	-4.13	No		0.48	1.26	3.67
6	0.43	0.5	-0.46	No	0.12	-0.17	1.31	0.48
5	0.45	0.44	0.03	No	0.2	-0.22	0.84	0.53
4	0.49	0.35	0.56	No	0.39	-0.38	0.59	0.47
3	0.59	0.25	1.02	Yes	1.15	-0.48	-0.06	-0.16
2	0.6	0.17	0.86	Yes	2.02	-0.57	-0.29	-0.17
1	0.86	0.17	0.7	Yes	4.75	-0.88	-0.7	-0.7
0	0.92	0.03	0.	Yes				

n^A	p^B	p^S	Revenue	$\tilde{\Phi}_1(n^A+1)$	Threshold α	Est. Δ in	Est. Δ in	Actual Δ in
				$\geq \tilde{\Gamma}_1(n^A+1)$		social surplus	revenue	revenue
						if continue	if continue	if continue
10	0.	1.	- 10.					
9	0.16	0.98	-7.33	No		0.63	2.27	2.27
8	0.24	0.87	-5.05	No		0.45	1.91	0.93
7	0.28	0.87	-4.13	No		0.48	1.26	3.67
6	0.43	0.5	-0.46	No	0.12	-0.17	1.31	0.48
5	0.45	0.44	0.03	No	0.2	-0.22	0.84	0.53
4	0.49	0.35	0.56	No	0.39	-0.38	0.59	0.47
3	0.59	0.25	1.02	Yes	1.15	-0.48	-0.06	-0.16
2	0.6	0.17	0.86	Yes	2.02	-0.57	-0.29	-0.17
1	0.86	0.17	0.7	Yes	4.75	-0.88	-0.7	-0.7
0	0.92	0.03	0.	Yes				

n^A	p^B	p^S	Revenue	$\tilde{\Phi}_1(n^A+1)$	Threshold α	Est. Δ in	Est. Δ in	Actual Δ in
				$\geq \! \tilde{\Gamma}_1(n^A\!+\!1)$		social surplus	revenue	revenue
						if continue	if continue	if continue
10	0.	1.	- 10.					
9	0.16	0.98	-7.33	No		0.63	2.27	2.27
8	0.24	0.87	-5.05	No		0.45	1.91	0.93
7	0.28	0.87	-4.13	No		0.48	1.26	3.67
6	0.43	0.5	-0.46	No	0.12	-0.17	1.31	0.48
5	0.45	0.44	0.03	No	0.2	-0.22	0.84	0.53
4	0.49	0.35	0.56	No	0.39	-0.38	0.59	0.47
3	0.59	0.25	1.02	Yes	1.15	-0.48	-0.06	-0.16
2	0.6	0.17	0.86	Yes	2.02	-0.57	-0.29	-0.17
1	0.86	0.17	0.7	Yes	4.75	-0.88	-0.7	-0.7
0	0.92	0.03	0.	Yes				

n^A	p^B	p^S	Revenue	$\tilde{\Phi}_1(n^A+1)$	Threshold α	Est. Δ in	Est. Δ in	Actual Δ in
				$\geq \tilde{\Gamma}_1(n^A+1)$		social surplus	revenue	revenue
						if continue	if continue	if continue
10	0.	1.	-10.					
9	0.16	0.98	-7.33	No		0.63	2.27	2.27
8	0.24	0.87	-5.05	No		0.45	1.91	0.93
7	0.28	0.87	-4.13	No		0.48	1.26	3.67
6	0.43	0.5	-0.46	No	0.12	-0.17	1.31	0.48
5	0.45	0.44	0.03	No	0.2	-0.22	0.84	0.53
4	0.49	0.35	0.56	No	0.39	-0.38	0.59	0.47
3	0.59	0.25	1.02	Yes	1.15	-0.48	-0.06	-0.16
2	0.6	0.17	0.86	Yes	2.02	-0.57	-0.29	-0.17
1	0.86	0.17	0.7	Yes	4.75	-0.88	-0.7	-0.7
0	0.92	0.03	0.	Yes				

n^A	p^B	p^S	Revenue	$\tilde{\Phi}_1(n^A+1)$	Threshold α	Est. Δ in	Est. Δ in	Actual Δ in
				$\geq \tilde{\Gamma}_1(n^A+1)$		social surplus	revenue	revenue
						if continue	if continue	if continue
10	0.	1.	-10.					
9	0.16	0.98	-7.33	No		0.63	2.27	2.27
8	0.24	0.87	-5.05	No		0.45	1.91	0.93
7	0.28	0.87	-4.13	No		0.48	1.26	3.67
6	0.43	0.5	-0.46	No	0.12	-0.17	1.31	0.48
5	0.45	0.44	0.03	No	0.2	-0.22	0.84	0.53
4	0.49	0.35	0.56	No	0.39	-0.38	0.59	0.47
3	0.59	0.25	1.02	Yes	1.15	-0.48	-0.06	-0.16
2	0.6	0.17	0.86	Yes	2.02	-0.57	-0.29	-0.17
1	0.86	0.17	0.7	Yes	4.75	-0.88	-0.7	-0.7
0	0.92	0.03	0.	Yes				

Limited Commitment by the Designer

- Designers may face requirements of nonarbitrary design
- To the extent that a designer can delegate the formation of expectations and reserve prices to a mechanism that determines these using bid data, the DCA provides a solution
- No additional commitment by the designer is required (given commitment to a DCA and estimator)
- It is self-enforcing to:
 - End the DCA if $\tilde{\Phi}_1 \geq \tilde{\Gamma}_1$
 - Otherwise, to try to reach the target prices
 - And end the DCA if target prices are reached without exits

Limited Commitment by the Designer

- Designers may face requirements of nonarbitrary design
- To the extent that a designer can delegate the formation of expectations and reserve prices to a mechanism that determines these using bid data, the DCA provides a solution
- No additional commitment by the designer is required (given commitment to a DCA and estimator)
- It is self-enforcing to:
 - End the DCA if $\tilde{\Phi}_1 \geq \tilde{\Gamma}_1$
 - Otherwise, to try to reach the target prices
 - And end the DCA if target prices are reached without exits

Non-Regularity vs Non-Parameteric Tradeoff

- Non-parametric approach cannot make out-of-sample predictions and so cannot detect non-regularities in the distributions on the inframarginal agents who trade.
- A parametric estimation approach would, in principle, permit such predictions and detections.
- What is the designer more confident about parameteric form of distributions or that they are regular?

Non-Regularity vs Non-Parameteric Tradeoff

- Non-parametric approach cannot make out-of-sample predictions and so cannot detect non-regularities in the distributions on the inframarginal agents who trade.
- A parametric estimation approach would, in principle, permit such predictions and detections.
- What is the designer more confident about parameteric form of distributions or that they are regular?

Non-Regularity vs Non-Parameteric Tradeoff

- Non-parametric approach cannot make out-of-sample predictions and so cannot detect non-regularities in the distributions on the inframarginal agents who trade.
- A parametric estimation approach would, in principle, permit such predictions and detections.
- What is the designer more confident about parameteric form of distributions or that they are regular?

- We develop a two-sided mechanism that is prior free and permits an implementation via DCA
- Prior-free DCA:
 - Obviously dominant strategies
 - Privacy preserving
 - Asypmtotically optimal
 - Performs well in the small
- These properties provide robustness for practical problems, yet allow the mechanism to vary with relevant details, much like Bayesian optimal mechanisms do

Rate of Convergence

- Spacings between order statistics (for well-behaved distributions) are on the order of 1/min {m, n}
- Suggests expected efficiency loss of that order

▶ Return to Slide

- First note that: $plim_{m\to\infty}\Gamma(c_{[\rho m]}) \tilde{\Gamma}(\rho m) = 0$
- Follows from the definitions and

$$E\left[\frac{G(c_{[j]})}{g(c_{[j]})}\right] = j\left(E\left[c_{[j+1]}\right] - E\left[c_{[j]}\right]\right)$$

Image: A matrix and a matrix

Proof: Asymptotic Optimality

• Using
$$\frac{1}{r_m} \to 0$$
 and $\frac{r_m}{m} \to 0$, for $\rho \in (0, 1)$,
$$\lim_{m \to \infty} Var \left[\Gamma(c_{[\rho m]}) - \tilde{\Gamma}(\rho m) \right] = 0$$

• Using this and Markov's inequality, for $\varepsilon > 0$,

$$\Pr\left(\left|\Gamma(c_{[\rho m]}) - \tilde{\Gamma}(\rho m)\right| \ge \varepsilon\right) \le \frac{E\left[\left|\Gamma(c_{[\rho m]}) - \tilde{\Gamma}(\rho m)\right|^{2}\right]}{\varepsilon^{2}} \to 0$$

- Implies $p \lim_{m \to \infty} \Gamma(c_{[\rho m]}) \tilde{\Gamma}(\rho m) = 0$
- Decreasing variance in ρ gives uniform convergence in probability

Return to Slide

Assuming differentiability of virtual types, any BOPP mechanism is characterized by θ_i^* such that

$$\frac{1 - F(\Phi_{\alpha}^{-1}(\theta_j^*))}{f(\Phi_{\alpha}^{-1}(\theta_j^*))} \frac{1}{\Phi_{\alpha}^{-1\prime}(\theta_j^*)} = \frac{G(\Gamma_{\alpha}^{-1}(\theta_j^*))}{g(\Gamma_{\alpha}^{-1}(\theta_j^*))} \frac{1}{\Gamma_{\alpha}^{-1\prime}(\theta_j^*)}, \qquad (1)$$

if such a $\theta_j^* \in [\Phi_{\alpha}(v_{(j+1)}), \Gamma_{\alpha}(c_{[j+1]})]$ exists, and otherwise if

$$\frac{1-F(\Phi_{\alpha}^{-1}(\theta))}{f(\Phi_{\alpha}^{-1}(\theta))}\frac{1}{\Phi_{\alpha}^{-1\prime}(\theta)} < \frac{G(\Gamma_{\alpha}^{-1}(\theta))}{g(\Gamma_{\alpha}^{-1}(\theta))}\frac{1}{\Gamma_{\alpha}^{-1\prime}(\theta)}$$

for all $\theta \in [\Phi_{\alpha}(v_{(j+1)}), \Gamma_{\alpha}(c_{[j+1]})]$, then $\theta_j^* = \Gamma_{\alpha}(c_{[j+1]})$ and otherwise $\theta_j^* = \Phi_{\alpha}(v_{(j+1)})$.

Return to Slide