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Introduction

Bayesian mechanism design:

Fruitful conceptual framework and analytical tool

“Fragile” because of its dependence on the fine details of
the environment

E.g., optimal reserves vary with distributions

Wilson (1987): “Only by repeated weakening of common
knowledge assumptions will the theory approximate reality”
as is “required to conduct useful analyses of practical
problems”

Yet, may “fragility” be a virtue?

If designers (and econometricians) can learn about the
environment, the theory is predictive
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Robust and Bayesian Mechanisms

This paper

Bridges the gap between robust and Bayesian mechanism
design
Develops a double-clock auction for a two-sided
environment with privately informed buyers and sellers that
is:

Prior free
Endows agents with obviously dominant strategies
Preserves the privacy of agents who trade
Asymptotically Bayesian optimal (any weights on revenue
and efficiency)
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Prior-Free Double-Clock Auctions (DCAs)

Defined without reference to distributions

Eqm outcomes vary with distributions because the
mechanism estimates relevant details nonparametrically
and uses these estimates to determine who trades
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Further Properties of Prior-Free DCAs

Deficit free

Weakly group strategy-proof

Operational for any size of market

Requires only limited commitment by the designer

Its equilibrium outcome remains an equilibrium outcome in
a full-information first-price double auction

Ex post individually rational

Bayesian mechanism design can be implemented,
asymptotically, in a way that is robust on dimensions relevant
for practical problems
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Further Results

For two-sided setups,

We characterize the Bayesian optimal mechanisms that
preserve the privacy of trading agents

Show that our mechanism converges to the privacy
preserving Bayesian optimum as estimation errors vanish

Moreover, we establish

As a corollary, the impossibility of ex post efficient privacy
preserving trade (when full trade is sometimes but not
always optimal)

Show that the mechanism performs well in the small
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Extensions

We can incorporate:

Real-time diagnostics regarding tradeoffs associated with
continuing the DCA

Revenue thresholds
Asymmetries among agents

Caps on the number of agents of a particular group who
can trade
Favoritism towards particular groups of agents
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Role for Flexible Two-Sided Exchanges

Novel environments and one-off reallocations of assets
Designer and participants can’t rely on past experience
Desirable to dispense with Bayesian notions both for the
rules of trade and for the equilibrium strategies
Obvious dominant strategies aid inexperienced bidders

More generally:
Privacy preservation reduces participation concerns and
costs
Envy-freeness guards against claims of “arbitrary and
capricious” design (esp. if designer is Government)
Deficit-freeness protects the designer
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and virtual types (theoretical)
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Illustration: Symmetric Setup and Revenue Extraction

n buyers and m sellers; single-unit demand and supply

Buyers’ values v are independent draws from F (v) on
[v , v ] with continuous positive density f (v)

Sellers’ costs c are independent draws from G(c) on [c, c]
with continuous positive density g(c)

Everyone is risk neutral and has quasilinear utility

Regularity holds:

Φ(v) ≡ v − 1 − F (v)
f (v)

and Γ(c) ≡ c +
G(c)
g(c)

are increasing
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Illustration: Symmetries, Revenue Extraction

Designer and agents do not know the distributions

Designer knows that regularity holds

Objective: asymptotic revenue maximization
Later allow for:

objective of weighted sum of revenue and social surplus
asymmetries between buyer and seller groups
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Optimal Bayesian Mechanism

v(1) > ... > v(n) > v(n+1) ≡ v

c[1] < ... < c[m] < c[m+1] ≡ c

Optimal Bayesian mechanism – maximizes expected
revenue subject to IC and IR – trades q units, with q
satisfying

Φ(v(q)) ≥ Γ(c[q]) and Φ(v(q+1)) < Γ(c[q+1])

DS implementation: buyers pay max{v(q+1),Φ
−1(Γ(c[q]))},

sellers receive min{c[q+1], Γ
−1(Φ(v(q)))}
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Empirical Virtual Types and Spacings

Empirical distributions:

F̂ (j) ≡ n + 1 − j
n + 1

and Ĝ(j) ≡ j
m + 1

Empirical virtual types:

Φ̂(j) ≡ v(j) −
1 − F̂ (j)

F̂(j)−F̂ (j+1)
v(j)−v(j+1)

= v(j) − j[v(j) − v(j+1)]

Γ̂(j) ≡ c[j ] +
Ĝ(j)

Ĝ(j)−Ĝ(j+1)
c[j]−c[j+1]

= c[j ] + j[c[j+1] − c[j ]]
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Simple Spacings-Based Mechanism

Trade k − 1 units, where k is the largest number such that

Φ̂(k) ≥ Γ̂(k) and Φ̂(k + 1) < Γ̂(k + 1)

Buyers pay v(k), sellers receive c[k ]

Issue: Φ̂ and Γ̂ are highly volatile
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Theoretical and Empirical Virtual Types
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Smoothed Virtual Types

Take the average of nearby spacings and reduce the
coefficient to get smoothed virtual types:

Smoothed virtual value

Φ̃(j) ≡ v(j) − (j − 2)
v(j) − v(j+rn)

rn

Smoothed virtual cost

Γ̃(j) ≡ c[j ] + (j − 2)
c[j+rm] − c[j ]

rm

where rn and rm grow large with n and m, but at a slower
rate (e.g. rn =

√
n)
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Theoretical, Empirical, and Smoothed Virtual Types
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Properties of Smoothed Virtual Types

Φ̃(j) = v(j) − (j − 2)
v(j) − v(j+rn)

rn

Γ̃(j) = c[j ] + (j − 2)
c[j+rm] − c[j ]

rm

1 For j ≥ 2, Φ̃(j) ≥ Γ̃(j) implies v(j) ≥ c[j ]
2 Φ̃(j) depends only on j and v(j), .., v(n)
3 Γ̃(j) depends only on j and c[j ], ..., c[m]

1 is important for deficit-freeness

2–3 are important for dominant strategies and
non-bossiness

non-bossiness is important for privacy preservation and
clock implementation
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Baseline Prior-Free Mechanism

Define Φ̃(n + 1) = −∞ and Γ̃(m + 1) = ∞
Let k̃ be the largest integer s.t.

Φ̃(k̃) ≥ Γ̃(k̃) and Φ̃(k̃ + 1) < Γ̃(k̃ + 1)

Trade k̃ − 1 units at prices pB = v(k̃) and pS = c[k̃ ]

Loertscher and Marx 30 August 2015 18 / 39



Distribution-Free Properties

Dominant strategy incentive compatible
An agent who trades under truth telling cannot affect prices
and still trade
An agent who does not trade under truth telling makes a
loss when trading after a lie

Ex post IR

Envy free

Non-bossy

Deficit free

Weak group strategy-proof

Loertscher and Marx 30 August 2015 19 / 39



Asymptotic Optimality

Compare prior-free to optimal revenue as n → ∞ and
m → ∞
A mechanism is asymptotically optimal if the ratio of the
value of the objective – for now, revenue – under this
mechanism over the value of the objective under the
optimal mechanism converges in probability to 1

Proposition: The baseline prior-free mechanism is
asymptotically optimal.

Loertscher and Marx 30 August 2015 20 / 39



Ratio of Prior-Free to Optimal Revenue

Rate of Convergence
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Asymptotic Optimality: Sketch of Proof

Step 1: uniform bounds exist for the variance of the
estimated spacings used in the smoothed virtual types
(away from the boundary)

Step 2: Φ̃− Φ and Γ̃− Γ are uniformly convergent in
probability to zero (away from the boundary)
Step 3: if v < c, the number of trades in the baseline
prior-free mechanism approaches that in the optimal
mechanism

Intuitively, if Φ̃ and Γ̃ stay close to Φ and Γ, then the first
intersection point of Φ̃ and Γ̃ cannot be far from the
intersection of Φ and Γ

Step 4: the number of trades and payments converge in
probability to the optimal level Proof details
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Generalization

Extends to a more general designer objective:
α revenue + (1 − α) total surplus
Bayesian optimal mechanism is based on weighted virtual
types:

Φα(v) ≡ v − α
1 − F (v)

f (v)
and Γα(c) ≡ c + α

G(c)
g(c)

and trades qα units iff Φα(v(qα)) ≥ Γα(c[qα]) and
Φα(v(qα+1)) < Γα(c[qα+1])

We call this an α-optimal mechanism
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Is this the best one can do?

We define optimality in light of what is possible subject to
privacy preservation

Privacy preservation matters (Hurwicz and Reiter 2006;
McMillan 1994; FCC; Brandt and Sandholm 2005)

Privacy preservation requires a clock implementation

What does clock implementation require?
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Restrictions Imposed by Clock Implementation

Proposition

A direct mechanism can be implemented via a DCA if and only
if it satisfies dominant strategies, non-bossiness, and
envy-freeness.

Show that DS, NB, EF imply the possibility of clock
implementation

DS: price faced does not depend on own report

EF: all face same price

NB: price can only depend on reports of nontrading agents

DS and EF: buyers’ price must increase and sellers’ price
decrease as the quantity traded decreases

Implies that clock implementation exists
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Privacy Preservation Comes at a Cost

Proposition

No α-optimal mechanism can be implemented as a DCA.

Show the α-optimal mechanism violates NB

In the α-optimal mechanism, buyer i trades iff
vi ≥ max

{

v(qα+1),Φ
−1
α

(

Γα(c[qα])
)}

, which depends on the
report of the trading seller with type c[qα]

General impossibility result (any α and # of agents): Can’t
implement the ex post efficient or revenue maximizing (or
any α-optimal) outcome in a privacy preserving way

Loertscher and Marx 30 August 2015 26 / 39
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What is the best one can do s.t. privacy preservation?

We define the Bayesian Optimal Privacy Preserving
(BOPP) mechanism in terms of a DCA

Increasing buyer clock pB, decreasing seller clock pS (if
the number of active buyers and sellers differ, move one
clock to induce exit)

When the DCA ends, active agents trade at clock prices
State: j active buyers and sellers remain

If Φ(pB) ≥ Γ(pS), DCA ends
Otherwise, move clocks until exit or Φ(pB) = θ = Γ(pS),
where target θ is chosen optimally knowing F and G
If reach θ with no exit, DCA ends, otherwise continue

Optimal θ

Loertscher and Marx 30 August 2015 27 / 39



What is the best one can do s.t. privacy preservation?

We define the Bayesian Optimal Privacy Preserving
(BOPP) mechanism in terms of a DCA

Increasing buyer clock pB, decreasing seller clock pS (if
the number of active buyers and sellers differ, move one
clock to induce exit)

When the DCA ends, active agents trade at clock prices
State: j active buyers and sellers remain

If Φ(pB) ≥ Γ(pS), DCA ends
Otherwise, move clocks until exit or Φ(pB) = θ = Γ(pS),
where target θ is chosen optimally knowing F and G
If reach θ with no exit, DCA ends, otherwise continue

Optimal θ

Loertscher and Marx 30 August 2015 27 / 39



What is the best one can do s.t. privacy preservation?

We define the Bayesian Optimal Privacy Preserving
(BOPP) mechanism in terms of a DCA

Increasing buyer clock pB, decreasing seller clock pS (if
the number of active buyers and sellers differ, move one
clock to induce exit)

When the DCA ends, active agents trade at clock prices
State: j active buyers and sellers remain

If Φ(pB) ≥ Γ(pS), DCA ends
Otherwise, move clocks until exit or Φ(pB) = θ = Γ(pS),
where target θ is chosen optimally knowing F and G
If reach θ with no exit, DCA ends, otherwise continue

Optimal θ

Loertscher and Marx 30 August 2015 27 / 39



What is the best one can do s.t. privacy preservation?

We define the Bayesian Optimal Privacy Preserving
(BOPP) mechanism in terms of a DCA

Increasing buyer clock pB, decreasing seller clock pS (if
the number of active buyers and sellers differ, move one
clock to induce exit)

When the DCA ends, active agents trade at clock prices
State: j active buyers and sellers remain

If Φ(pB) ≥ Γ(pS), DCA ends
Otherwise, move clocks until exit or Φ(pB) = θ = Γ(pS),
where target θ is chosen optimally knowing F and G
If reach θ with no exit, DCA ends, otherwise continue

Optimal θ

Loertscher and Marx 30 August 2015 27 / 39



What is the best one can do s.t. privacy preservation?

We define the Bayesian Optimal Privacy Preserving
(BOPP) mechanism in terms of a DCA

Increasing buyer clock pB, decreasing seller clock pS (if
the number of active buyers and sellers differ, move one
clock to induce exit)

When the DCA ends, active agents trade at clock prices
State: j active buyers and sellers remain

If Φ(pB) ≥ Γ(pS), DCA ends
Otherwise, move clocks until exit or Φ(pB) = θ = Γ(pS),
where target θ is chosen optimally knowing F and G
If reach θ with no exit, DCA ends, otherwise continue

Optimal θ

Loertscher and Marx 30 August 2015 27 / 39



What is the best one can do s.t. privacy preservation?

We define the Bayesian Optimal Privacy Preserving
(BOPP) mechanism in terms of a DCA

Increasing buyer clock pB, decreasing seller clock pS (if
the number of active buyers and sellers differ, move one
clock to induce exit)

When the DCA ends, active agents trade at clock prices
State: j active buyers and sellers remain

If Φ(pB) ≥ Γ(pS), DCA ends
Otherwise, move clocks until exit or Φ(pB) = θ = Γ(pS),
where target θ is chosen optimally knowing F and G
If reach θ with no exit, DCA ends, otherwise continue

Optimal θ

Loertscher and Marx 30 August 2015 27 / 39



Prior-Free Approximation to the BOPP

As in the BOPP, but use Φ̃ and Γ̃ and estimate θ

In the absence of estimation error, this augmented
prior-free mechanism achieves the BOPP outcome

Illustration
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Performance in the Small

Ratio of prior-free to optimal outcomes (types drawn from
the U[0,1])
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Performance in the Very Small (n = m = 2)

Comparisons for n = m = 2 and α = 0
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Extension to Asymmetric Groups of Buyers and
Sellers

Buyers and sellers are divided into groups

Buyers in group b draw from F b and sellers in s from Gs

Group membership is common knowledge

Use a multiple-clock auction – synchronize buyer clocks to
equalize virtual values across buyer groups, and similarly
for sellers
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Extensions: Alternative Objectives and Constraints

Real-time diagnostics
Threshold α such that the DCA ends
Estimated change in social surplus from continuing
Estimated change in revenue from continuing

Alternative objectives
Maximization subject to a revenue threshold

Extensions to the multiple-clock auction
Caps on the number in a group that can trade
Favoritism towards particular groups (apply a lower α to
favored groups)

Skip to end
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Real-Time Diagnostics: Example
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Limited Commitment by the Designer

Designers may face requirements of nonarbitrary design

To the extent that a designer can delegate the formation of
expectations and reserve prices to a mechanism that
determines these using bid data, the DCA provides a
solution

No additional commitment by the designer is required
(given commitment to a DCA and estimator)
It is self-enforcing to:

End the DCA if Φ̃1 ≥ Γ̃1

Otherwise, to try to reach the target prices
And end the DCA if target prices are reached without exits
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Non-Regularity vs Non-Parameteric Tradeoff

Non-parametric approach cannot make out-of-sample
predictions and so cannot detect non-regularities in the
distributions on the inframarginal agents who trade.

A parametric estimation approach would, in principle,
permit such predictions and detections.

What is the designer more confident about – parameteric
form of distributions or that they are regular?
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Conclusions

We develop a two-sided mechanism that is prior free and
permits an implementation via DCA
Prior-free DCA:

Obviously dominant strategies
Privacy preserving
Asypmtotically optimal
Performs well in the small

These properties provide robustness for practical
problems, yet allow the mechanism to vary with relevant
details, much like Bayesian optimal mechanisms do
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Rate of Convergence

Spacings between order statistics (for well-behaved
distributions) are on the order of 1/min {m,n}
Suggests expected efficiency loss of that order

(a) B and S: Uniform(0,1) (b) B: Beta(2,4), S: Beta(4,2)

Return to Slide
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Illustration of Prior-Free Mechanism
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Proof: Asymptotic Optimality

First note that: plimm→∞Γ(c[ρm])− Γ̃(ρm) = 0

Follows from the definitions and

E
[

G(c[j ])

g(c[j ])

]

= j
(

E
[

c[j+1]
]

− E
[

c[j ]
])
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Proof: Asymptotic Optimality

Using 1
rm

→ 0 and rm
m → 0, for ρ ∈ (0,1),

limm→∞ Var
[

Γ(c[ρm])− Γ̃(ρm)
]

= 0

Using this and Markov’s inequality, for ε > 0,

Pr
(
∣

∣

∣
Γ(c[ρm])− Γ̃(ρm)

∣

∣

∣
≥ ε

)

≤
E
[

∣

∣

∣
Γ(c[ρm])− Γ̃(ρm)

∣

∣

∣

2
]

ε2 → 0

Implies p limm→∞ Γ(c[ρm])− Γ̃(ρm) = 0

Decreasing variance in ρ gives uniform convergence in
probability
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Loertscher and Marx 30 August 2015 38 / 39



BOPP

Assuming differentiability of virtual types, any BOPP
mechanism is characterized by θ∗j such that

1 − F (Φ−1
α

(θ∗j ))

f (Φ−1
α (θ∗j ))

1

Φ−1′
α (θ∗j )

=
G(Γ−1

α
(θ∗j ))

g(Γ−1
α (θ∗j ))

1

Γ−1′
α (θ∗j )

, (1)

if such a θ∗j ∈ [Φα(v(j+1)), Γα(c[j+1])] exists, and otherwise if

1 − F (Φ−1
α

(θ))

f (Φ−1
α (θ))

1

Φ−1′
α (θ)

<
G(Γ−1

α
(θ))

g(Γ−1
α (θ))

1

Γ−1′
α (θ)

for all θ ∈ [Φα(v(j+1)), Γα(c[j+1])], then θ∗j = Γα(c[j+1]) and
otherwise θ∗j = Φα(v(j+1)).
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