

Combinatorial Clock Auction Prices

under Spiteful Bidding

Vladimir Karamychev

Erasmus University Rotterdam

Market Economy

- Economic decisions (resource allocations) are
 - Price-based
- Price system in competitive world
 - Includes all the info necessary to make optimal (SW) decisions
 - (Imperfect markets \rightarrow Distorted prices)
- Price \rightarrow allocation

Prices

- Originate in markets
- Used by many price-taking economic agents
 - (Except for bilateral negotiations)
- Auctions result in
 - Allocation
 - Corresponding prices

zafing

This Presentation

- CCA prices
 - Relation to bidders' values
 - Through analyzing bidding behavior
 - In equilibrium
 - Through incentives
 - Based on joint work with
 - Maarten Janssen, University of Vienna
 - Bernhard Kasberger, University of Vienna

Content

- Auction prices in standard auctions
- In VCG mechanism
- In CCA
 - Overview
 - Preference to raise rivals cost
 - Real CCA example
 - Results

Standard Auctions

- IPV, risk neutrality, symmetry
 - Price = opportunity cost: value of other non-winning bidders
 - SP auction exactly
 - FP auction in expectation of the winner
- Risk aversion higher prices
 - Price includes "insurance" against losing
- Value correlation and interdependence / asymmetry
 - Price includes informational / competitive rent (+/-)

6 29/08/2015 EARIE-2015 München

VCG mechanism

- With multiple objects
 - Price = opportunity cost: value of other bidders
 - Discriminatory prices
 - Different bidders pay different prices for identical objects
- Yet, average price = average opportunity cost
- Opportunity cost
 - Can be seen as a 'fair' price, a market value

CCA Fair Pricing in Telecom

- Telecom regulators believe
 - In the absence of strategic behavior
 - CCA and SMRA lead to fair prices
 - Prices are fair
 - Good proxies for opportunity cost

- Thus
 - Auction prices must be related to users' values

8 29/08/2015 EARIE-2015 München

New Life for Old CCA Prices

- Ofcom (UK) 2015
 - Annual license fees (ALFs) for mobile frequencies (2015+)
 - In 900 MHz and 1800 MHz bands
 - Using prices from recent Ireland and Austria CCA
 - Argument
 - These prices may provide a good reference point for determining the

current market value

• Here: we check this argument

9 29/08/2015 EARIE-2015 München

CCA - Origin

- Developed by Ausubel, Carmton, and Milgrom (2006)
 - Combinatorial auctions, combinatorial proxy auctions have been around before (Vernon Smith, Ausubel, others)
 - Computer science aspects
 - Direct solution to the WDP with 2000 bids of 5 bidders requires evaluating 32x10¹⁵ combinations (1000 years). Software tools
 - VCG and Core prices require some more
 - Indirect computations may tolerate up to 100'000 bids/ bidder

CCA - Details

- Consists of two phases
 - Clock phase (primary rounds) SMRA (clock auction)
 - Nothing is yet allocated
 - Supplementary phase (supplementary round) Proxy auction
- Binding restrictions:
 - Clock bids restrict supplementary bids

CCA - Applications

Ausubel and Baranov, 2015

Country and Auction	Year	Revenues, M
Trinidad and Tobago Spectrum Auction	2005	\$25.1
UK 10 – 40 GHz Auction	2008	£1.43
UK L-Band Auction	2008	£8.33
Netherlands 2.6 GHz Spectrum Auction	2010	€2.63
Denmark 2.6 GHz Spectrum Auction	2010	DKK 1010
Austria 2.6 GHz Spectrum Auction	2010	€39.5
Switzerland Spectrum Auction	2012	CHF 996
Denmark 800 MHz Spectrum Auction	2012	DKK 739
Ireland Multi-Band Spectrum Auction	2012	€482
Netherlands Multi-Band Spectrum Auction	2012	€3800
UK 4G Spectrum Auction	2013	£2340
Canada 700 MHz Spectrum Auction	2014	\$5270

12 29/08/2015 EARIE-2015 München

CCA - Applications

- Advertised as
 - Relatively complex tool
- But
 - If well understood, makes bidding very simple: bid your value
 - Truthful, or sincere bidding

zafing

CCA - Literature

- Issues with CCA
 - Goeree and Lin (2009, TE-2012)
 - If CCA prices are not in the core, truthful bidding is not EQ
 - Knapek and Wambach (2012)
 - Points out to strategic complexities
 - Beck and Ott (2011, draft)
 - Bidding above or below value can be optimal in CCA

CCA - Literature

- Amendments
 - New rules, fine-tuning, etc.
 - Ausubel Baranov (2015): CCA is extremely flexible
 - Different sorts of
 - Reserve prices
 - Activity rules (in clock) and Caps (in supplementary phases)
 - Quantity caps and floors, set-aside
 - Pricing rules (VCG, core-adjustments)

CCA - Literature

- Comparisons of CCA with VCG and other auctions (CCA)
 - Pr[efficient outcome], E[revenue, surplus, etc.]
 - Reasonably good performance
- This presentation
 - Those are marginal improvements: CCA fine-tunings
 - CCA seems wrong at a more fundamental level
 - We want auction outcome be robust to all we do not know
 - Not only values are private, but also preferences (max (v p)?)

Robustness check – Spite motive

- "Industry argument"
 - Future revenues depend on market competition
 - Investments into infrastructure are necessary
 - If others pay (much) more for their licenses
 - They are more restraint in their investments (less budget)
 - You have a competitive advantage
 - Business strategy:
 - Get licenses, and make others harder to get them

Spite motive – Raising Rivals' Payment

- Other (economic) argument:
 - "Look good/ bad" argument, or principal-agent aspect
 - Auction outcome can only be evaluated by comparing
 - What the winners get, and for how much

- Have won a better package at a lower price
 - Good
 - Otherwise career problems for members of the bidding team

Real CCA Outcome

Swiss 2012 CCA	ORANGE SUNRISE 160 MHZ 160 MHZ		SWISSCOM 255 MHZ	
OVERALL LICENCES COST	128 M	400 M	299 M	
800 MHz	20	20	20	
900 MHZ	10	30	30	
1800 MHz	50	40	60	
2.1 GHz	40	20	60	
2.6 GHz (paired)	40	50	40	
2.6 GHz (unpaired)	_	_	45	

19 29/08/2015 EARIE-2015 München

Spite Motive as Lexicographic Preference

- Assumed preferences: lexicographic
 - Maximize own profit
 - For equal profits
 - Choose bids that result in higher rivals' prices
- In standard auctions (FP, SP, VCG, etc.)
 - No effect
 - Same EQ, same outcomes

Result 1 – Supplementary Round

- From "Spiteful Bidding and Gaming in CCA" (2014)
 - Under some conditions (on the clock phase, later)
 - Bidding own value is a weakly **dominated** strategy
 - Compare with VCG weakly **dominant** strategy
 - Bidding maximal feasible (allowed) bids on packages is optimal (best response)
 - Even with no (zero) value
 - Bids and values are not anymore related

Example 1 - Basic Ingredients

- Three identical bidders
- Two bands, 1 and 2, with three blocks each
- Bidders are interested in three packages (x,y)

Package Nr.	Package (x,y)	Eligibility (5,8)	Value
1	(1,2)	21	50
2	(2,1)	18	46.5
3	(1,1)	13	40

zafing

Example 1 – Clock Phase

• Assume: truthful bidding

Round	Clock	Prices	Bid	EP	Value	Cost	Surplus
1	1	4	(1,2)	21	50	9	41
2	1	5	(2,1)	18	46.5	7	39.5
3	2	5	(2,1)	18	46.5	9	37.5
4	3	5	(2,1)	18	46.5	11	35.5
5	4	5	(2,1)	18	46.5	13	33.5
6	5	5	(2,1)	18	46.5	15	31.5
7	6	5	(2,1)	18	46.5	17	29.5
8	7	5	(1,1)	13	40	12	28

zafing

Example 1 – Relative Cap Implications

- Let a bidder bid b(1,1) = b ($b \ge 12$) in the supplementary round
- His other bids are restricted by:
 - $b(2,1) \le b+7$
 - $b(1,2) \le b(2,1) + 4 \le b + 11$
 - $b(3,0) \le b + 9$
 - $b(0,3) \le b(1,2) + 3 \le b + 14$

Example 1 – Supplementary Round

• Assume: truthful bidding

Packages ->	(1,1)	(2,1)	(1,2)	(3,0)	(0,3)	Price for (1,1)
Supplementary bids	40	46.5	50	0	0	16.5

- Prices: p(1,1) = (46.5 + 50) (40 + 40) = 16.5 Opportunity cost
- Equilibrium bidding (undominated) unique outcome

Packages →	(1,1)	(2,1)	(1,2)	(3,0)	(0,3)	Price for (1,1)
EQ 1 bids	24	31	35	33	38	23
EQ 2 bids	40	47	51	49	54	23

- Prices: p(1,1) = (49 + 54) (40 + 40) = 23 40% higher!
 - No bids on (3,0) and (0,3): p(1,1) = (47 + 51) (40 + 40) = 18

Example 1 – Supplementary Round

• Another (dominated) EQ

Bidder	(1,1)	(2,1)	(1,2)	(3,0)	(0,3)	Price for (1,1)
1	17	24	28	23	31	17
2	18	25	28	23	31	18
3	19	26	29	23	31	19

- Lower (riskier) bid \rightarrow lower price
- Resembles FP auction pay-your-bid
- Continuum of such equilibria

zafing

Result 2 – Supplementary Round

- From "Budget Constraints in CCA" (2015)
- Under budget constraint B
 - Conservative: no bids above B (the only way in VCG)
 - Neutral: Bids above B but payment is always below B
 - Risky: Bids above B, payment can be above B, but is below B in EQ
- Result:
 - Continuum of Hawk-Dove type of Equilibria
 - 3 bidders' case: 1 Hawk + 2 Dove bidders

Result 2 – Supplementary Round

- Hawk bidder
 - Bids low on what he wins, and high (>B) on the other packages
 - Pays low price (<B) in EQ, but if others deviate / miscoordinate
 - Either wins nothing
 - Or wins a different package at high (>B) price
- Dove bidders
 - Bid B on what they win, and high (>B) on the other packages
 - Pay B in EQ

Result 2 – Supplementary Round Prices

- In the supplementary round
 - CCA price is determined not by values of others
 - But by which equilibrium is played
 - How much risk bidders are willing to accept

Example 2 – CCA Equilibrium Analysis

- Two bidders, one band, two objects, continuous time
- Values
 - Private information (as well as bids)
 - $v_i(1)$ follows distribution F(x) over $[11, \infty)$
 - $v_i(2) = v_i(1) + \varepsilon_i$, where ε_i follows distribution G(x) over [0,10]
- Clock prices increase continuously until there is no excess demand
- Tie-breaking rule
 - (1) Clock allocation or (2) both winners is chosen

Example 2 – CCA Equilibrium

- Equilibrium (undominated)
 - Clock phase demand of a bidder *i* (as a function of $v_i(1)$, $v_i(2)$)

•
$$d_i = \begin{cases} 2, & if \ p < 10 \\ 1, & if \ p = 10 \\ 0, & if \ p > 10 \end{cases}$$

- Supplementary phase bids:
 - In EQ: $b_i(1) = 10$, $b_i(2) = 20$, auction price $p_i(1) = 10$
 - VCG prices would be $p_i(1) = \varepsilon_{-i} \in [0, 10]$

Example 2 – CCA Equilibrium

- Why is it an EQ?
 - Bidding for 2 longer (price>10):
 - Win 2 at price 20, worse than win 1 at price 10
 - Bidding for 1 earlier:
 - Lower competitor's price
 - Dropping to 0 before price >10
 - Winning nothing

Result 3

- CCA Equilibrium prices are uncorrelated with values
 - $p_i(1) = 10$ is the upper-bound of the support of G(x)
- Clock phase does not provide any info about values
- Activity/cap rule does not play any role here, efficient outcome
- Demand expansion
 - Bids are above demand in the clock (needed for Result 1) \rightarrow
 - So that bids are above values in the supplementary round

Example 3 – CCA Price Distortions

- Two bidders, two band, two objects in each band, continuous time
- Additive values, private information (as well as bids)
 - Band 1: $v_i^1(1) > 10$, $v_i^1(2) = v_i^1(1) + \varepsilon_i^1$, $\varepsilon_i^1 \in [0, 10]$
 - Band 2: $v_i^2(1) \in [0,20], v_i^2(2) = v_i^2(1) + \varepsilon_i^2, \varepsilon_i^2 \in [0, v_i^2(1)]$
- CCA EQ outcome:
 - Package (1,1), prices: $p_i(1,1) = 10 + \varepsilon_{-i}^2$
 - Components 10 and ε_{-i}^2 in $p_i(1,1)$ are distorted

Result 4

- Not only CCA prices are biased from opportunity cost
 - But also distorted
 - Price ratios do not reflect relative opportunity costs
- Thus
 - Comparing what winners have won and what they have payed
 - In multi-band CCA
 - Can be misleading

Result 5 – Excess Supply in Clock

- Excess supply in the clock phase
 - Complicate the analysis of the supplementary phase
 - No dominant EQ anymore (Result 1 fails)
- Yet, demand expansion remains an EQ outcome
 - Example 2 modified
 - 3 bidders, 4 units, values
 - $v_i(1) > 20, \varepsilon_i(2) \in [0,10], \varepsilon_i(3) = \varepsilon_i(4) = 0$

Result 5 – Excess Supply in Clock

- EQ:
 - Clock
 - Bid for 3 up to p = 10, then switch to 1
 - Supplementary round
 - $b_i(1) = v_i(1), b_i(2) = v_i(1) + \varepsilon_i(2), b_i(3) = v_i(1) + \varepsilon_i(2) + 10,$
 - Outcome: max $\varepsilon_i(2)$ bidder (j = 3) wins 2, others win 1
 - $p_{1,2}(1) = 10, p_3(2) = 10 + \max \varepsilon_{1,2}(2)$
 - VCG prices: $p_1(1) = \varepsilon_2(2), p_2(1) = \varepsilon_1(2), p_3(2) = \varepsilon_1(2) + \varepsilon_2(2)$

Summary

- Apart from issues within CCA, there are problems with CCA outcomes
 - CCA prices might be uninformative to the economy
 - As well as the clock phase development
 - Relative prices as well
 - Using them for ALFs can be problematic
 - These prices may have no / little relation to market values
 - Even relative prices